552 research outputs found

    Differential localization and expression of complement in a rat model of motor neuron disease

    Get PDF
    ComBio is the major ASBMB conference held each year, in association with other organisations. This page has links to past, current and future ComBio meetings. Further information and links will be placed online as they become available

    Noble gas films on a decagonal AlNiCo quasicrystal

    Full text link
    Thermodynamic properties of Ne, Ar, Kr, and Xe adsorbed on an Al-Ni-Co quasicrystalline surface (QC) are studied with Grand Canonical Monte Carlo by employing Lennard-Jones interactions with parameter values derived from experiments and traditional combining rules. In all the gas/QC systems, a layer-by-layer film growth is observed at low temperature. The monolayers have regular epitaxial fivefold arrangements which evolve toward sixfold close-packed structures as the pressure is increased. The final states can contain either considerable or negligible amounts of defects. In the latter case, there occurs a structural transition from five to sixfold symmetry which can be described by introducing an order parameter, whose evolution characterizes the transition to be continuous or discontinuous as in the case of Xe/QC (first-order transition with associated latent heat). By simulating fictitious noble gases, we find that the existence of the transition is correlated with the size mismatch between adsorbate and substrate's characteristic lengths. A simple rule is proposed to predict the phenomenon.Comment: 19 pages. 8 figures. (color figures can be seen at http://alpha.mems.duke.edu/wahyu/ or http://www.iop.org/EJ/abstract/0953-8984/19/1/016007/

    Shallow BF2 implants in Xe-bombardment-preamorphized Si: the interaction between Xe and F

    Get PDF
    Si(100) samples, preamorphized to a depth of ~30 nm using 20 keV Xe ions to a nominal fluence of 2×1014 cm-2 were implanted with 1 and 3 keV BF2 ions to fluences of 7×1014 cm-2. Following annealing over a range of temperatures (from 600 to 1130 °C) and times the implant redistribution was investigated using medium-energy ion scattering (MEIS), secondary ion mass spectrometry (SIMS), and energy filtered transmission electron microscopy (EFTEM). MEIS studies showed that for all annealing conditions leading to solid phase epitaxial regrowth, approximately half of the Xe had accumulated at depths of 7 nm for the 1 keV and at 13 nm for the 3 keV BF2 implant. These depths correspond to the end of range of the B and F within the amorphous Si. SIMS showed that in the preamorphized samples, approximately 10% of the F migrates into the bulk and is trapped at the same depths in a ~1:1 ratio to Xe. These observations indicate an interaction between the Xe and F implants and a damage structure that becomes a trapping site. A small fraction of the implanted B is also trapped at this depth. EXTEM micrographs suggest the development of Xe agglomerates at the depths determined by MEIS. The effect is interpreted in terms of the formation of a volume defect structure within the amorphized Si, leading to F stabilized Xe agglomerates or XeF precipitates

    The C5a anaphylatoxin receptor CD88 is expressed in presynaptic terminals of hippocampal mossy fibres

    Get PDF
    Background: In the periphery, C5a acts through the G-protein coupled receptor CD88 to enhance/maintain inflammatory responses. In the brain, CD88 can be expressed on astrocytes, microglia and neurons. Previous studies have shown that the hippocampal CA3 region displays CD88-immunolabelling, and CD88 mRNA is present within dentate gyrus granule cells. As granule cells send dense axonal projections (mossy fibres) to CA3 pyramidal neurons, CD88 expression could be expressed on mossy fibres. However, the cellular location of CD88 within the hippocampal CA3 region is unknown

    Damage profiles of ultrashallow B implants in Si and the Kinchin-Pease relationship

    Get PDF
    Damage distributions resulting from 0.1-2 keV B+ implantation at room temperature into Si(100) to doses ranging from 1×1014 to 2×1016 cm-2 have been determined using high-depth-resolution medium-energy-ion scattering in the double alignment mode. For all B+ doses and energies investigated a 3-4 nm deep, near-surface damage peak was observed while for energies at and above 1 keV, a second damage peak developed beyond the mean projected B+ ion range of 5.3 nm. This dual damage peak structure is due to dynamic annealing processes. For the near-surface peak it is observed that, at the lowest implant energies and doses used, for which recombination processes are suppressed due to the proximity of the surface capturing interstitials, the value of the damage production yield for low-mass B+ ions is equal or greater than the modified Kinchin-Pease model predictions [G. H. Kinchin and R. S. Pease, Rep. Prog. Phys. 18, 1 (1955); G. H. Kinchin and R. S. Pease, J. Nucl. Energy 1, 200 (1955); P. Sigmund, Appl. Phys. Lett. 14, 114 (1969)]

    The impact of ventilation rate on reducing the microorganisms load in the air and on surfaces in a room-sized chamber

    Get PDF
    Hospital-acquired infections (HAIs) are a global challenge incurring mortalities and high treatment costs. The environment plays an important role in transmission due to contaminated air and surfaces. This includes microorganisms' deposition from the air onto surfaces. Quantifying the deposition rate of microorganisms enables understanding surface contamination and can inform strategies to mitigate the infection risk. We developed and validated a novel Automated Multiplate Passive Air Sampling (AMPAS) device. This enables sequences of passive deposition samples to be collected over a controlled time period without human intervention. AMPAS was used with air sampling to measure the effect of ventilation rate and spatial location on the deposition rate of aerosolized Staphylococcus aureus in a 32 m3 chamber. Increasing the ventilation rate from 3 to 6 ACH results in a reduction of microbial load in the air and on surfaces by 45% ± 10% and 44% ± 32%, respectively. The deposition rate onto internal surfaces λd was calculated as 1.38 ± 0.48 h−1. Samples of airborne and surface microorganisms taken closer to the ventilation supply showed a lower concentration than close to the extract. The findings support the importance of controlling the ventilation and the environmental parameters to mitigate both air and surface infection risks in the hospital environment
    • …
    corecore